Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurotrauma ; 36(13): 2129-2138, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30747034

RESUMO

Postsynaptic density 95 (PSD-95), the major scaffold protein at excitatory synapses, plays a major role in mediating intracellular signaling by synaptic N-methyl-d-aspartate (NMDA) type glutamate receptors. Despite the fact that much is known about the role of PSD-95 in NMDA-mediated toxicity, less is known about its role in mechanical injury, and more specifically, in traumatic brain injury (TBI). Given that neural circuitry is disrupted after TBI and that PSD-95 and its interactors end-binding protein 3 (EB3) and adenomatous polyposis coli (APC) shape dendrites, we examined whether changes to these proteins and their interactions occur after brain trauma. Here, we report that total levels of PSD-95 and the interaction of PSD-95 with EB3 increase at 1 and 7 days after moderate controlled cortical impact (CCI), but these changes do not occur after mild injury. Because changes occur to PSD-95 following brain trauma in vivo, we next considered the functional consequences of PSD-95 alterations in vitro. Rapid deformation of cortical neurons leads to neuronal death 72 h after injury, but this outcome is not dependent on PSD-95 expression. However, disruptions in dendritic arborization following stretch injury in vitro require PSD-95 expression, and these changes in arborization can be mimicked with expression of PSD-95 mutants lacking the second PDZ domain. Thus, PSD-95 and its interactors may serve as therapeutic targets for repairing dendrites after TBI.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Concussão Encefálica/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Concussão Encefálica/patologia , Lesões Encefálicas Traumáticas/patologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
2.
Neurobiol Dis ; 119: 13-25, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30031156

RESUMO

Cytosolic PSD-95 interactor (cypin), the primary guanine deaminase in the brain, plays key roles in shaping neuronal circuits and regulating neuronal survival. Despite this pervasive role in neuronal function, the ability for cypin activity to affect recovery from acute brain injury is unknown. A key barrier in identifying the role of cypin in neurological recovery is the absence of pharmacological tools to manipulate cypin activity in vivo. Here, we use a small molecule screen to identify two activators and one inhibitor of cypin's guanine deaminase activity. The primary screen identified compounds that change the initial rate of guanine deamination using a colorimetric assay, and secondary screens included the ability of the compounds to protect neurons from NMDA-induced injury and NMDA-induced decreases in frequency and amplitude of miniature excitatory postsynaptic currents. Hippocampal neurons pretreated with activators preserved electrophysiological function and survival after NMDA-induced injury in vitro, while pretreatment with the inhibitor did not. The effects of the activators were abolished when cypin was knocked down. Administering either cypin activator directly into the brain one hour after traumatic brain injury significantly reduced fear conditioning deficits 5 days after injury, while delivering the cypin inhibitor did not improve outcome after TBI. Together, these data demonstrate that cypin activation is a novel approach for improving outcome after TBI and may provide a new pathway for reducing the deficits associated with TBI in patients.


Assuntos
Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/prevenção & controle , Guanina Desaminase/metabolismo , Animais , Lesões Encefálicas Traumáticas/fisiopatologia , Células COS , Células Cultivadas , Chlorocebus aethiops , Dimetil Sulfóxido/farmacologia , Medo/efeitos dos fármacos , Medo/fisiologia , Guanina Desaminase/antagonistas & inibidores , Compostos Heterocíclicos com 3 Anéis/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , N-Metilaspartato/farmacologia , Técnicas de Cultura de Órgãos , Ratos
3.
Mol Neurobiol ; 55(8): 6269-6281, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29294243

RESUMO

The guanine deaminase cypin (cytosolic PSD-95 interactor) binds to PSD-95 (postsynaptic density protein 95) and regulates dendrite branching by promoting microtubule polymerization. Here, we identify a novel short isoform of cypin, termed cypinS, which is expressed in mouse and human, but not rat, tissues. Cypin and cypinS mRNA and protein levels peak at P7 and P14 in the mouse brain, suggesting a role for these isoforms during development. Interestingly, although cypinS lacks guanine deaminase activity, overexpression of cypinS increases dendrite branching. This increase occurs further away from soma than do increases resulting from overexpression of cypin. In contrast, overexpression of cypin, but not cypinS, decreases dendritic spine density and maturity. This suggests that changes to spines, but not to dendrites, may be dependent on guanine deaminase activity. Furthermore, overexpression of either cypin or cypinS increases miniature excitatory postsynaptic current (mEPSC) frequency, pointing to a presynaptic role for both isoforms. Interestingly, overexpression of cypinS results in a significantly greater increase in frequency than does overexpression of cypin. Thus, cypin and cypinS play distinct roles in neuronal development.


Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Guanina Desaminase/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Células COS , Chlorocebus aethiops , Dendritos/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Potenciais Pós-Sinápticos Excitadores , Guanina Desaminase/genética , Células HEK293 , Hipocampo/metabolismo , Humanos , Camundongos , Especificidade de Órgãos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
J Neural Eng ; 15(1): 016020, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29091046

RESUMO

OBJECTIVE: This study investigates the effect that overexpression of cytosolic PSD-95 interactor (cypin), a regulator of synaptic PSD-95 protein localization and a core regulator of dendrite branching, exerts on the electrical activity of rat hippocampal neurons and networks. APPROACH: We cultured rat hippocampal neurons and used lipid-mediated transfection and lentiviral gene transfer to achieve high levels of cypin or cypin mutant (cypinΔPDZ; PSD-95 non-binding) expression cellularly and network-wide, respectively. MAIN RESULTS: Our analysis revealed that although overexpression of cypin and cypinΔPDZ increase dendrite numbers and decrease spine density, cypin and cypinΔPDZ distinctly regulate neuronal activity. At the single cell level, cypin promotes decreases in bursting activity while cypinΔPDZ reduces sEPSC frequency and further decreases bursting compared to cypin. At the network level, by using the Fano factor as a measure of spike count variability, cypin overexpression results in an increase in variability of spike count, and this effect is abolished when cypin cannot bind PSD-95. This variability is also dependent on baseline activity levels and on mean spike rate over time. Finally, our spike sorting data show that overexpression of cypin results in a more complex distribution of spike waveforms and that binding to PSD-95 is essential for this complexity. SIGNIFICANCE: Our data suggest that dendrite morphology does not play a major role in cypin action on electrical activity.


Assuntos
Proteínas de Transporte/biossíntese , Dendritos/metabolismo , Guanina Desaminase/biossíntese , Hipocampo/metabolismo , Rede Nervosa/metabolismo , Neurônios/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Dendritos/genética , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Expressão Gênica , Guanina Desaminase/genética , Ligação Proteica/fisiologia , Ratos
5.
Sci Rep ; 7(1): 1539, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28484273

RESUMO

Glutamate-induced excitotoxicity, mediated by overstimulation of N-methyl-D-aspartate (NMDA) receptors, is a mechanism that causes secondary damage to neurons. The early phase of injury causes loss of dendritic spines and changes to synaptic activity. The phosphatidylinositol-4,5-bisphosphate 3-kinase/Akt/ mammalian target of rapamycin (PI3K/Akt/mTOR) pathway has been implicated in the modulation and regulation of synaptic strength, activity, maturation, and axonal regeneration. The present study focuses on the physiology and survival of neurons following manipulation of Akt and several downstream targets, such as GSK3ß, FOXO1, and mTORC1, prior to NMDA-induced injury. Our analysis reveals that exposure to sublethal levels of NMDA does not alter phosphorylation of Akt, S6, and GSK3ß at two and twenty four hours following injury. Electrophysiological recordings show that NMDA-induced injury causes a significant decrease in spontaneous excitatory postsynaptic currents at both two and twenty four hours, and this phenotype can be prevented by inhibiting mTORC1 or GSK3ß, but not Akt. Additionally, inhibition of mTORC1 or GSK3ß promotes neuronal survival following NMDA-induced injury. Thus, NMDA-induced excitotoxicity involves a mechanism that requires the permissive activity of mTORC1 and GSK3ß, demonstrating the importance of these kinases in the neuronal response to injury.


Assuntos
Fenômenos Eletrofisiológicos , Glicogênio Sintase Quinase 3 beta/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , N-Metilaspartato/toxicidade , Neurônios/metabolismo , Neurônios/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Modelos Neurológicos , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Ratos , Transmissão Sináptica/efeitos dos fármacos
6.
Front Cell Neurosci ; 10: 6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26869880

RESUMO

Proper communication between neurons depends upon appropriate patterning of dendrites and correct distribution and structure of spines. Schizophrenia is a neuropsychiatric disorder characterized by alterations in dendrite branching and spine density. Nitric oxide synthase 1 adaptor protein (NOS1AP), a risk gene for schizophrenia, encodes proteins that are upregulated in the dorsolateral prefrontal cortex (DLPFC) of individuals with schizophrenia. To elucidate the effects of NOS1AP overexpression observed in individuals with schizophrenia, we investigated changes in actin dynamics and spine development when a long (NOS1AP-L) or short (NOS1AP-S) isoform of NOS1AP is overexpressed. Increased NOS1AP-L protein promotes the formation of immature spines when overexpressed in rat cortical neurons from day in vitro (DIV) 14 to DIV 17 and reduces the amplitude of miniature excitatory postsynaptic currents (mEPSCs). In contrast, increased NOS1AP-S protein increases the rate of actin polymerization and the number of immature and mature spines, which may be attributed to a decrease in total Rac1 expression and a reduction in the levels of active cofilin. The increase in the number of mature spines by overexpression of NOS1AP-S is accompanied by an increase in the frequency of mEPSCs. Our findings show that overexpression of NOS1AP-L or NOS1AP-S alters the actin cytoskeleton and synaptic function. However, the mechanisms by which these isoforms induce these changes are distinct. These results are important for understanding how increased expression of NOS1AP isoforms can influence spine development and synaptic function.

7.
J Cell Biol ; 194(3): 441-57, 2011 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-21807882

RESUMO

In neurons, regulation of gene expression occurs in part through translational control at the synapse. A fundamental requirement for such local control is the targeted delivery of select neuronal mRNAs and regulatory RNAs to distal dendritic sites. The nature of spatial RNA destination codes, and the mechanism by which they are interpreted for dendritic delivery, remain poorly understood. We find here that in a key dendritic RNA transport pathway (exemplified by BC1 RNA, a dendritic regulatory RNA, and protein kinase M ζ [PKMζ] mRNA, a dendritic mRNA), noncanonical purine•purine nucleotide interactions are functional determinants of RNA targeting motifs. These motifs are specifically recognized by heterogeneous nuclear ribonucleoprotein A2 (hnRNP A2), a trans-acting factor required for dendritic delivery. Binding to hnRNP A2 and ensuing dendritic delivery are effectively competed by RNAs with CGG triplet repeat expansions. CGG repeats, when expanded in the 5' untranslated region of fragile X mental retardation 1 (FMR1) mRNA, cause fragile X-associated tremor/ataxia syndrome. The data suggest that cellular dysregulation observed in the presence of CGG repeat RNA may result from molecular competition in neuronal RNA transport pathways.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas , Animais , Expansão das Repetições de DNA , Dendritos/genética , Dendritos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica , Conformação de Ácido Nucleico , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Citoplasmático Pequeno , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...